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Real Time Machine
Learning

 Machine learning is often a
computationally expensive task

* Want to develop a framework for
Human Activity Recognition
(HAR) that can be run in real
time on a small computer

* HAR could be used to improve
assisted living for the elderly




Input to time series models is a sequence of
vectors representing data at discrete time steps

Term Clarification Input size is the size of these vectors

Sequence length is how many of these vectors
are passed in

T=-5 T=-4 T=-3 T=-2 T=-1 T=0
I I I I I I -

Sequence Length




* Ran experiments to see which hyperparameters had
most impact on accuracy

First Approach: |« produced some ways to further process model
[STMs | outpet

* Worked on finding balance between saving time,
and maintaining accuracy
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* Noticed that the null class was the most
First Approach: uncertain

LSTMS | « Search for the optimal cutoff point, where if
uncertainty > cutoff, the output is null
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Major Limitation for LSTMs

* LSTMs are required to process time series data
sequentially

e Attention based models can process time series
data in parallel

Serial Approach Parallel Approach
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Self Attention Equation

* Derive from input: Q, K, and V
* Output: Z

softmax(




* For sequences shorter than 15,000 attention
is faster than LSTM

Time Complexity | « 15,000 is a ridiculous length for a machine

learning time series problem anyway
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e Attention model is better able to harness the
Parallelization parallelization benefit of GPU

Speedup * 1,500 where this benefit becomes minimal is
an extremely long time series in practice
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* Trained to 100 epochs, test accuracy was on
average 49% for attention, 55.5% for LSTM

Accurac
y * With the amount of classes being predicted,

picking randomly is 7%
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Conclusions

* Attention based models are significantly faster than
LSTMs and can further leverage parallelization

 However, a single layer is slightly less accurate than
a single LSTM layer
* For future work:

* Attention layer has more parameters than a LSTM
layer, | would like to see how these affect accuracy

e | would like to test the attention model on other
datasets to verify these results
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Thank You

e Thanks to Dr. Gebremedhin
and Skylar Norgaard for
working with me this
summer

e This material is based upon
work supported by the
National Science Foundation
Research Experiences for
Undergraduates Program
under Grant No. 1757632.

e Thank you for listening to my
presentation




Questions?




